MLA - Multifrequency Lock-in Amplifier

Specifications: IMP-MLA 40-40

Lock-in

Number of frequencies	$32(40)$	Can be distributed on the available input and output ports. Higher value when sampling frequency is limited to $<50 \mathrm{Msample/s}$
Maximum time constant	$18-1795 \mathrm{~s}$	2^{32} samples (i.e. 18 s at 250 Msamples/s, 1795 s at $2.5 \mathrm{Msamples/s)}$
Minimum time constant	10 ns	4 samples (for continuous transfer to computer minimum $30 \mu \mathrm{~s})$
Data transfer rate to computer	35000 packets/s	Each packet contains $32(40) \mathrm{l}$-channel and 32 (40) Q-channel values
Frequency resolution	$0.23 \mathrm{mHz}-0.22 \mu \mathrm{~Hz}$	Sampling frequency / 2^{40}
Phase resolution	0.33 nano deg	360 deg / $\mathbf{2}^{40}$

Analog ports

Port name	Max sampling frequency* [MSPS]	Bit resolution [bits]	Voltage range	Coupling	Analog bandwidth** [MHz]	Impedance*** [Ohm]
IN 1	250	14	6 Vpp	AC	$50(1250)$	1346
IN 2	250	14	$-0.75 \mathrm{Vto}+0.75 \mathrm{~V}$	DC	$50(1250)$	402
IN 3	62.5	16	2 Vpp	AC	$25(550)$	402
IN 4	62.5	16	-1 V to +1 V	DC	$25(550)$	402
OUT 1	250	16	-2 V to +2V	DC	$50(250)$	50
OUT 2	250	16	-2 V to +2V	DC	$50(250)$	50
OUT A	0.8	16	-4.1 V to +4.1 V	DC	0.5	50
OUT B	0.8	16	-4.1 V to +4.1 V	DC	0.5	50
OUT C	0.8	16	-4.1 V to +4.1 V	DC	0.5	50
OUT D	0.8	-4.1 V to +4.1 V	DC	0.5	50	

* Sampling frequency is selectable to 2500 MSPS / n where $10<=n<=1045$ is integer.
** Number in paranthesis denotes the bandwith of the data converter which is achievable if the antialias filter is removed.
*** For optimal noise and distortion properties, the MLA exposes the bare analog AD-converter driver interface. In many cases, an application specific pre-amplifier is required. In an AFM, such pre-amplifier is usually integrated in the AFM head. If you don't have a preamplifier for your application, Intermodulation Products can help you choose one that is optimal for your particular application.

Clock synchronization

Port name	Default frequency	Selectable frequency	Voltange ranges	Coupling
REF CLK IN	10 MHz	$100 \mathrm{MHz} \times \mathrm{R} / \mathrm{N}(\pm 40 \mathrm{ppm})$ where $\mathrm{R}<16384$ and $\mathrm{N}<4095$ are integers	$0.25-2.4 \mathrm{Vpp}$	AC
REF CLK OUT	10 MHz	$2500 \mathrm{MHz} / \mathrm{N}$ where $\mathrm{N}<1045$ is an integer	$0.7-2 \mathrm{Vpp}$	AC

Triggers

	Number of ports	Voltage standard *	Max output current	Impedance
TRIGGER INPUT	3	$2.5 \mathrm{~V}, 3.3 \mathrm{~V}$ or 5 V		High
TRIGGER OUTPUT	3	$2.5 \mathrm{~V}, 3.3 \mathrm{~V}$ or 5 V	50 mA	50 Ohm

* Voltage standard is selectable with a jumper

Digital IO

Location	Number of connections	Speed	Voltage standard	Connection
High-speed connector	36 (or 18 LVDS pairs)	1 GHz	2.5 V (or LVDS)	FPGA logic
Pin header ($\mathbf{2 . 5 4 \mathrm { mm } \text {) }} \boldsymbol{9}$	5 MHz	$2 \times 3.3 \mathrm{~V}+7 \times 2.5 \mathrm{~V}$	FPGA logic	
Pin header $(\mathbf{2 . 5 4} \mathbf{~ m m})$	8	5 MHz	$2 \times 3.3 \mathrm{~V}+6 \times 1.8 \mathrm{~V}$	Processing system

